Update detection results to use correct key names for scores

Corrects the key names used to retrieve detection results in `compare_models.py` to match the output format of the hybrid detector.

Replit-Commit-Author: Agent
Replit-Commit-Session-Id: 7a657272-55ba-4a79-9a2e-f1ed9bc7a528
Replit-Commit-Checkpoint-Type: full_checkpoint
Replit-Commit-Event-Id: 600ade79-ad9b-4993-b968-e6466b703598
Replit-Commit-Screenshot-Url: https://storage.googleapis.com/screenshot-production-us-central1/449cf7c4-c97a-45ae-8234-e5c5b8d6a84f/7a657272-55ba-4a79-9a2e-f1ed9bc7a528/RJGlbTt
This commit is contained in:
marco370 2025-11-25 08:51:27 +00:00
parent 49eb9a9f91
commit 837f7d4c08
2 changed files with 13 additions and 10 deletions

View File

@ -18,10 +18,6 @@ externalPort = 80
localPort = 41303
externalPort = 3002
[[ports]]
localPort = 41797
externalPort = 3001
[[ports]]
localPort = 43471
externalPort = 3003

View File

@ -116,6 +116,13 @@ def reanalyze_with_hybrid(detector, ip_address, old_detection):
new_detection = result[0]
# Confronto
new_score = new_detection.get('risk_score', 0)
new_type = new_detection.get('anomaly_type', 'unknown')
new_confidence = new_detection.get('confidence_level', 'unknown')
# Determina se è anomalia (score >= 80 = critical threshold)
new_is_anomaly = new_score >= 80
comparison = {
'ip_address': ip_address,
'logs_count': len(logs),
@ -126,14 +133,14 @@ def reanalyze_with_hybrid(detector, ip_address, old_detection):
'old_blocked': old_detection['blocked'],
# Nuovo modello Hybrid (rianalisi)
'new_score': new_detection.get('anomaly_score', 0),
'new_anomaly_type': new_detection.get('anomaly_type', 'unknown'),
'new_confidence': new_detection.get('confidence', 'unknown'),
'new_is_anomaly': new_detection.get('is_anomaly', False),
'new_score': new_score,
'new_anomaly_type': new_type,
'new_confidence': new_confidence,
'new_is_anomaly': new_is_anomaly,
# Delta
'score_delta': new_detection.get('anomaly_score', 0) - float(old_detection['risk_score']),
'type_changed': old_detection['anomaly_type'] != new_detection.get('anomaly_type', 'unknown'),
'score_delta': new_score - float(old_detection['risk_score']),
'type_changed': old_detection['anomaly_type'] != new_type,
}
return comparison