ids.alfacom.it/python_ml/cron_train.sh
marco370 dc91096d9d Improve log processing and add automated tasks
Update log processing to use the correct timestamp field and introduce cron jobs for automated model training and anomaly detection.

Replit-Commit-Author: Agent
Replit-Commit-Session-Id: 7a657272-55ba-4a79-9a2e-f1ed9bc7a528
Replit-Commit-Checkpoint-Type: full_checkpoint
Replit-Commit-Event-Id: f0653fd5-fc94-4fcb-8d7e-2a0e90fc81bf
Replit-Commit-Screenshot-Url: https://storage.googleapis.com/screenshot-production-us-central1/449cf7c4-c97a-45ae-8234-e5c5b8d6a84f/7a657272-55ba-4a79-9a2e-f1ed9bc7a528/MkBJZ0L
2025-11-17 18:11:49 +00:00

36 lines
949 B
Bash

#!/bin/bash
# =========================================================
# CRON TRAINING - Addestramento automatico modello ML
# =========================================================
# Esegue training ogni 12 ore con 100K log più recenti
# =========================================================
# Logging
LOG_FILE="/var/log/ids/training.log"
mkdir -p /var/log/ids
exec >> "$LOG_FILE" 2>&1
echo "========================================="
echo "🤖 [$(date)] TRAINING AUTOMATICO AVVIATO"
echo "========================================="
# Esegue training via API
curl -X POST http://localhost:8000/train \
-H "Content-Type: application/json" \
-d '{
"max_records": 100000,
"hours_back": 24,
"contamination": 0.01
}' \
--max-time 300
EXIT_CODE=$?
if [ $EXIT_CODE -eq 0 ]; then
echo "✅ [$(date)] Training completato con successo"
else
echo "❌ [$(date)] Training fallito (exit code: $EXIT_CODE)"
fi
echo ""