ids.alfacom.it/deployment/cron_train.sh
marco370 24966154d6 Increase training data for ML model to improve detection accuracy
Increase `max_records` from 100,000 to 1,000,000 in the cron job for training the ML model.

Replit-Commit-Author: Agent
Replit-Commit-Session-Id: 7a657272-55ba-4a79-9a2e-f1ed9bc7a528
Replit-Commit-Checkpoint-Type: full_checkpoint
Replit-Commit-Event-Id: 1ab6a903-d037-4e7c-8165-3fff9dd0df18
Replit-Commit-Screenshot-Url: https://storage.googleapis.com/screenshot-production-us-central1/449cf7c4-c97a-45ae-8234-e5c5b8d6a84f/7a657272-55ba-4a79-9a2e-f1ed9bc7a528/U7LNEhO
2025-11-26 08:45:56 +00:00

27 lines
831 B
Bash
Executable File

#!/bin/bash
# =========================================================
# CRON TRAINING - Addestramento automatico modello ML
# =========================================================
LOG_FILE="/var/log/ids/training.log"
mkdir -p /var/log/ids
echo "=========================================" >> "$LOG_FILE"
echo "[$(date)] Training automatico avviato" >> "$LOG_FILE"
echo "=========================================" >> "$LOG_FILE"
curl -X POST http://localhost:8000/train \
-H "Content-Type: application/json" \
-d '{"max_records": 1000000, "hours_back": 24}' \
--max-time 300 >> "$LOG_FILE" 2>&1
EXIT_CODE=$?
if [ $EXIT_CODE -eq 0 ]; then
echo "[$(date)] Training completato con successo" >> "$LOG_FILE"
else
echo "[$(date)] Training fallito (exit code: $EXIT_CODE)" >> "$LOG_FILE"
fi
echo "" >> "$LOG_FILE"