Introduces `CICIDS2017Loader` for dataset handling and `ValidationMetrics` class for calculating performance metrics in Python. Replit-Commit-Author: Agent Replit-Commit-Session-Id: 7a657272-55ba-4a79-9a2e-f1ed9bc7a528 Replit-Commit-Checkpoint-Type: intermediate_checkpoint Replit-Commit-Event-Id: ad530f16-3a16-44a3-8fed-6c5d56775c77 Replit-Commit-Screenshot-Url: https://storage.googleapis.com/screenshot-production-us-central1/449cf7c4-c97a-45ae-8234-e5c5b8d6a84f/7a657272-55ba-4a79-9a2e-f1ed9bc7a528/F6DiMv4
325 lines
11 KiB
Python
325 lines
11 KiB
Python
"""
|
|
Validation Metrics for IDS Models
|
|
Calculates Precision, Recall, F1-Score, False Positive Rate, Accuracy
|
|
"""
|
|
|
|
import numpy as np
|
|
import pandas as pd
|
|
from typing import Dict, Tuple, Optional
|
|
from sklearn.metrics import (
|
|
precision_score,
|
|
recall_score,
|
|
f1_score,
|
|
accuracy_score,
|
|
confusion_matrix,
|
|
roc_auc_score,
|
|
classification_report
|
|
)
|
|
import json
|
|
|
|
|
|
class ValidationMetrics:
|
|
"""Calculate and track validation metrics for IDS models"""
|
|
|
|
def __init__(self):
|
|
self.history = []
|
|
|
|
def calculate(
|
|
self,
|
|
y_true: np.ndarray,
|
|
y_pred: np.ndarray,
|
|
y_prob: Optional[np.ndarray] = None
|
|
) -> Dict:
|
|
"""
|
|
Calculate all metrics
|
|
|
|
Args:
|
|
y_true: True labels (0=normal, 1=attack)
|
|
y_pred: Predicted labels (0=normal, 1=attack)
|
|
y_prob: Prediction probabilities (optional, for ROC-AUC)
|
|
|
|
Returns:
|
|
Dict with all metrics
|
|
"""
|
|
# Confusion matrix
|
|
tn, fp, fn, tp = confusion_matrix(y_true, y_pred).ravel()
|
|
|
|
# Core metrics
|
|
precision = precision_score(y_true, y_pred, zero_division=0)
|
|
recall = recall_score(y_true, y_pred, zero_division=0)
|
|
f1 = f1_score(y_true, y_pred, zero_division=0)
|
|
accuracy = accuracy_score(y_true, y_pred)
|
|
|
|
# False Positive Rate (critical for IDS!)
|
|
fpr = fp / (fp + tn) if (fp + tn) > 0 else 0
|
|
|
|
# True Negative Rate (Specificity)
|
|
tnr = tn / (tn + fp) if (tn + fp) > 0 else 0
|
|
|
|
# Matthews Correlation Coefficient (good for imbalanced datasets)
|
|
mcc_num = (tp * tn) - (fp * fn)
|
|
mcc_den = np.sqrt((tp + fp) * (tp + fn) * (tn + fp) * (tn + fn))
|
|
mcc = mcc_num / mcc_den if mcc_den > 0 else 0
|
|
|
|
metrics = {
|
|
# Primary metrics
|
|
'precision': float(precision),
|
|
'recall': float(recall),
|
|
'f1_score': float(f1),
|
|
'accuracy': float(accuracy),
|
|
'false_positive_rate': float(fpr),
|
|
|
|
# Additional metrics
|
|
'true_negative_rate': float(tnr), # Specificity
|
|
'matthews_corr_coef': float(mcc),
|
|
|
|
# Confusion matrix
|
|
'true_positives': int(tp),
|
|
'false_positives': int(fp),
|
|
'true_negatives': int(tn),
|
|
'false_negatives': int(fn),
|
|
|
|
# Sample counts
|
|
'total_samples': int(len(y_true)),
|
|
'total_attacks': int(np.sum(y_true == 1)),
|
|
'total_normal': int(np.sum(y_true == 0)),
|
|
}
|
|
|
|
# ROC-AUC if probabilities provided
|
|
if y_prob is not None:
|
|
try:
|
|
roc_auc = roc_auc_score(y_true, y_prob)
|
|
metrics['roc_auc'] = float(roc_auc)
|
|
except Exception:
|
|
metrics['roc_auc'] = None
|
|
|
|
return metrics
|
|
|
|
def calculate_per_class(
|
|
self,
|
|
y_true: np.ndarray,
|
|
y_pred: np.ndarray,
|
|
class_names: Optional[list] = None
|
|
) -> Dict:
|
|
"""
|
|
Calculate metrics per attack type
|
|
|
|
Args:
|
|
y_true: True class labels (attack types)
|
|
y_pred: Predicted class labels
|
|
class_names: List of class names
|
|
|
|
Returns:
|
|
Dict with per-class metrics
|
|
"""
|
|
if class_names is None:
|
|
class_names = sorted(np.unique(np.concatenate([y_true, y_pred])))
|
|
|
|
# Get classification report as dict
|
|
report = classification_report(
|
|
y_true,
|
|
y_pred,
|
|
target_names=class_names,
|
|
output_dict=True,
|
|
zero_division=0
|
|
)
|
|
|
|
# Format per-class metrics
|
|
per_class = {}
|
|
for class_name in class_names:
|
|
if class_name in report:
|
|
per_class[class_name] = {
|
|
'precision': report[class_name]['precision'],
|
|
'recall': report[class_name]['recall'],
|
|
'f1_score': report[class_name]['f1-score'],
|
|
'support': report[class_name]['support'],
|
|
}
|
|
|
|
# Add macro/weighted averages
|
|
per_class['macro_avg'] = report['macro avg']
|
|
per_class['weighted_avg'] = report['weighted avg']
|
|
|
|
return per_class
|
|
|
|
def print_summary(self, metrics: Dict, title: str = "Validation Metrics"):
|
|
"""Print formatted metrics summary"""
|
|
print(f"\n{'='*60}")
|
|
print(f"{title:^60}")
|
|
print(f"{'='*60}")
|
|
|
|
print(f"\n🎯 Primary Metrics:")
|
|
print(f" Precision: {metrics['precision']*100:6.2f}% (of 100 flagged, how many are real attacks)")
|
|
print(f" Recall: {metrics['recall']*100:6.2f}% (of 100 attacks, how many detected)")
|
|
print(f" F1-Score: {metrics['f1_score']*100:6.2f}% (harmonic mean of P&R)")
|
|
print(f" Accuracy: {metrics['accuracy']*100:6.2f}% (overall correctness)")
|
|
|
|
print(f"\n⚠️ False Positive Analysis:")
|
|
print(f" FP Rate: {metrics['false_positive_rate']*100:6.2f}% (normal traffic flagged as attack)")
|
|
print(f" FP Count: {metrics['false_positives']:6d} (actual false positives)")
|
|
print(f" TN Rate: {metrics['true_negative_rate']*100:6.2f}% (specificity - correct normal)")
|
|
|
|
print(f"\n📊 Confusion Matrix:")
|
|
print(f" Predicted Normal Predicted Attack")
|
|
print(f" Actual Normal {metrics['true_negatives']:6d} {metrics['false_positives']:6d}")
|
|
print(f" Actual Attack {metrics['false_negatives']:6d} {metrics['true_positives']:6d}")
|
|
|
|
print(f"\n📈 Dataset Statistics:")
|
|
print(f" Total Samples: {metrics['total_samples']:6d}")
|
|
print(f" Total Attacks: {metrics['total_attacks']:6d} ({metrics['total_attacks']/metrics['total_samples']*100:.1f}%)")
|
|
print(f" Total Normal: {metrics['total_normal']:6d} ({metrics['total_normal']/metrics['total_samples']*100:.1f}%)")
|
|
|
|
if 'roc_auc' in metrics and metrics['roc_auc'] is not None:
|
|
print(f"\n🎲 ROC-AUC: {metrics['roc_auc']:6.4f}")
|
|
|
|
if 'matthews_corr_coef' in metrics:
|
|
print(f" MCC: {metrics['matthews_corr_coef']:6.4f} (correlation coefficient)")
|
|
|
|
print(f"\n{'='*60}\n")
|
|
|
|
def compare_models(
|
|
self,
|
|
model_metrics: Dict[str, Dict],
|
|
highlight_best: bool = True
|
|
) -> pd.DataFrame:
|
|
"""
|
|
Compare metrics across multiple models
|
|
|
|
Args:
|
|
model_metrics: Dict of {model_name: metrics_dict}
|
|
highlight_best: Print best model
|
|
|
|
Returns:
|
|
DataFrame with comparison
|
|
"""
|
|
comparison = pd.DataFrame(model_metrics).T
|
|
|
|
# Select key columns
|
|
key_cols = ['precision', 'recall', 'f1_score', 'accuracy', 'false_positive_rate']
|
|
comparison = comparison[key_cols]
|
|
|
|
# Convert to percentages
|
|
for col in key_cols:
|
|
comparison[col] = comparison[col] * 100
|
|
|
|
# Round to 2 decimals
|
|
comparison = comparison.round(2)
|
|
|
|
if highlight_best:
|
|
print("\n📊 Model Comparison:")
|
|
print(comparison.to_string())
|
|
|
|
# Find best model (highest F1, lowest FPR)
|
|
comparison['score'] = comparison['f1_score'] - comparison['false_positive_rate']
|
|
best_model = comparison['score'].idxmax()
|
|
|
|
print(f"\n🏆 Best Model: {best_model}")
|
|
print(f" - F1-Score: {comparison.loc[best_model, 'f1_score']:.2f}%")
|
|
print(f" - FPR: {comparison.loc[best_model, 'false_positive_rate']:.2f}%")
|
|
|
|
return comparison
|
|
|
|
def save_metrics(self, metrics: Dict, filepath: str):
|
|
"""Save metrics to JSON file"""
|
|
with open(filepath, 'w') as f:
|
|
json.dump(metrics, f, indent=2)
|
|
print(f"[METRICS] Saved to {filepath}")
|
|
|
|
def load_metrics(self, filepath: str) -> Dict:
|
|
"""Load metrics from JSON file"""
|
|
with open(filepath) as f:
|
|
metrics = json.load(f)
|
|
return metrics
|
|
|
|
def meets_production_criteria(
|
|
self,
|
|
metrics: Dict,
|
|
min_precision: float = 0.90,
|
|
max_fpr: float = 0.05,
|
|
min_recall: float = 0.80
|
|
) -> Tuple[bool, list]:
|
|
"""
|
|
Check if model meets production deployment criteria
|
|
|
|
Args:
|
|
metrics: Calculated metrics
|
|
min_precision: Minimum acceptable precision (default 90%)
|
|
max_fpr: Maximum acceptable FPR (default 5%)
|
|
min_recall: Minimum acceptable recall (default 80%)
|
|
|
|
Returns:
|
|
(passes: bool, issues: list)
|
|
"""
|
|
issues = []
|
|
|
|
if metrics['precision'] < min_precision:
|
|
issues.append(
|
|
f"Precision {metrics['precision']*100:.1f}% < {min_precision*100:.0f}% "
|
|
f"(too many false positives)"
|
|
)
|
|
|
|
if metrics['false_positive_rate'] > max_fpr:
|
|
issues.append(
|
|
f"FPR {metrics['false_positive_rate']*100:.1f}% > {max_fpr*100:.0f}% "
|
|
f"(flagging too much normal traffic)"
|
|
)
|
|
|
|
if metrics['recall'] < min_recall:
|
|
issues.append(
|
|
f"Recall {metrics['recall']*100:.1f}% < {min_recall*100:.0f}% "
|
|
f"(missing too many attacks)"
|
|
)
|
|
|
|
passes = len(issues) == 0
|
|
|
|
if passes:
|
|
print("✅ Model meets production criteria!")
|
|
else:
|
|
print("❌ Model does NOT meet production criteria:")
|
|
for issue in issues:
|
|
print(f" - {issue}")
|
|
|
|
return passes, issues
|
|
|
|
|
|
def calculate_confidence_metrics(
|
|
detections: list,
|
|
ground_truth: Dict[str, bool]
|
|
) -> Dict:
|
|
"""
|
|
Calculate metrics for confidence-based detection system
|
|
|
|
Args:
|
|
detections: List of detection dicts with 'source_ip' and 'confidence_level'
|
|
ground_truth: Dict of {ip: is_attack (bool)}
|
|
|
|
Returns:
|
|
Metrics broken down by confidence level
|
|
"""
|
|
confidence_levels = ['high', 'medium', 'low']
|
|
metrics_by_confidence = {}
|
|
|
|
for level in confidence_levels:
|
|
level_detections = [d for d in detections if d.get('confidence_level') == level]
|
|
|
|
if not level_detections:
|
|
metrics_by_confidence[level] = {
|
|
'count': 0,
|
|
'true_positives': 0,
|
|
'false_positives': 0,
|
|
'precision': 0.0
|
|
}
|
|
continue
|
|
|
|
tp = sum(1 for d in level_detections if ground_truth.get(d['source_ip'], False))
|
|
fp = len(level_detections) - tp
|
|
precision = tp / len(level_detections) if level_detections else 0
|
|
|
|
metrics_by_confidence[level] = {
|
|
'count': len(level_detections),
|
|
'true_positives': tp,
|
|
'false_positives': fp,
|
|
'precision': precision
|
|
}
|
|
|
|
return metrics_by_confidence
|