Add a 'timestamp' column to the synthetic dataset generation in `python_ml/dataset_loader.py` to resolve a `KeyError` during model training and testing. Replit-Commit-Author: Agent Replit-Commit-Session-Id: 7a657272-55ba-4a79-9a2e-f1ed9bc7a528 Replit-Commit-Checkpoint-Type: intermediate_checkpoint Replit-Commit-Event-Id: 276a3bd4-aaee-40c9-acb7-027f23274a9f Replit-Commit-Screenshot-Url: https://storage.googleapis.com/screenshot-production-us-central1/449cf7c4-c97a-45ae-8234-e5c5b8d6a84f/7a657272-55ba-4a79-9a2e-f1ed9bc7a528/2lUhxO2
396 lines
16 KiB
Python
396 lines
16 KiB
Python
"""
|
||
CICIDS2017 Dataset Loader and Preprocessor
|
||
Downloads, cleans, and maps CICIDS2017 features to IDS feature space
|
||
"""
|
||
|
||
import pandas as pd
|
||
import numpy as np
|
||
from pathlib import Path
|
||
from typing import Dict, Tuple, Optional
|
||
import logging
|
||
|
||
logging.basicConfig(level=logging.INFO)
|
||
logger = logging.getLogger(__name__)
|
||
|
||
|
||
class CICIDS2017Loader:
|
||
"""
|
||
Loads and preprocesses CICIDS2017 dataset
|
||
Maps 80 CIC features to 25 IDS features
|
||
"""
|
||
|
||
DATASET_INFO = {
|
||
'name': 'CICIDS2017',
|
||
'source': 'Canadian Institute for Cybersecurity',
|
||
'url': 'https://www.unb.ca/cic/datasets/ids-2017.html',
|
||
'size_gb': 7.8,
|
||
'files': [
|
||
'Monday-WorkingHours.pcap_ISCX.csv',
|
||
'Tuesday-WorkingHours.pcap_ISCX.csv',
|
||
'Wednesday-workingHours.pcap_ISCX.csv',
|
||
'Thursday-WorkingHours-Morning-WebAttacks.pcap_ISCX.csv',
|
||
'Thursday-WorkingHours-Afternoon-Infilteration.pcap_ISCX.csv',
|
||
'Friday-WorkingHours-Morning.pcap_ISCX.csv',
|
||
'Friday-WorkingHours-Afternoon-PortScan.pcap_ISCX.csv',
|
||
'Friday-WorkingHours-Afternoon-DDos.pcap_ISCX.csv',
|
||
]
|
||
}
|
||
|
||
# Mapping CIC feature names → IDS feature names
|
||
FEATURE_MAPPING = {
|
||
# Volume features
|
||
'Total Fwd Packets': 'total_packets',
|
||
'Total Backward Packets': 'total_packets', # Combined
|
||
'Total Length of Fwd Packets': 'total_bytes',
|
||
'Total Length of Bwd Packets': 'total_bytes', # Combined
|
||
'Flow Duration': 'time_span_seconds',
|
||
|
||
# Temporal features
|
||
'Flow Packets/s': 'conn_per_second',
|
||
'Flow Bytes/s': 'bytes_per_second',
|
||
'Fwd Packets/s': 'packets_per_conn',
|
||
|
||
# Protocol diversity
|
||
'Protocol': 'unique_protocols',
|
||
'Destination Port': 'unique_dest_ports',
|
||
|
||
# Port scanning
|
||
'Fwd PSH Flags': 'port_scan_score',
|
||
'Fwd URG Flags': 'port_scan_score',
|
||
|
||
# Behavioral
|
||
'Fwd Packet Length Mean': 'avg_packet_size',
|
||
'Fwd Packet Length Std': 'packet_size_variance',
|
||
'Bwd Packet Length Mean': 'avg_packet_size',
|
||
'Bwd Packet Length Std': 'packet_size_variance',
|
||
|
||
# Burst patterns
|
||
'Subflow Fwd Packets': 'max_burst',
|
||
'Subflow Fwd Bytes': 'burst_variance',
|
||
}
|
||
|
||
# Attack type mapping
|
||
ATTACK_LABELS = {
|
||
'BENIGN': 'normal',
|
||
'DoS Hulk': 'ddos',
|
||
'DoS GoldenEye': 'ddos',
|
||
'DoS slowloris': 'ddos',
|
||
'DoS Slowhttptest': 'ddos',
|
||
'DDoS': 'ddos',
|
||
'PortScan': 'port_scan',
|
||
'FTP-Patator': 'brute_force',
|
||
'SSH-Patator': 'brute_force',
|
||
'Bot': 'botnet',
|
||
'Web Attack – Brute Force': 'brute_force',
|
||
'Web Attack – XSS': 'suspicious',
|
||
'Web Attack – Sql Injection': 'suspicious',
|
||
'Infiltration': 'suspicious',
|
||
'Heartbleed': 'suspicious',
|
||
}
|
||
|
||
def __init__(self, data_dir: str = "datasets/cicids2017"):
|
||
self.data_dir = Path(data_dir)
|
||
self.data_dir.mkdir(parents=True, exist_ok=True)
|
||
|
||
def download_instructions(self) -> str:
|
||
"""Return download instructions for CICIDS2017"""
|
||
instructions = f"""
|
||
╔══════════════════════════════════════════════════════════════════╗
|
||
║ CICIDS2017 Dataset Download Instructions ║
|
||
╚══════════════════════════════════════════════════════════════════╝
|
||
|
||
Dataset: {self.DATASET_INFO['name']}
|
||
Source: {self.DATASET_INFO['source']}
|
||
Size: {self.DATASET_INFO['size_gb']} GB
|
||
URL: {self.DATASET_INFO['url']}
|
||
|
||
MANUAL DOWNLOAD (Recommended):
|
||
1. Visit: {self.DATASET_INFO['url']}
|
||
2. Register/Login (free account required)
|
||
3. Download CSV files for all days (Monday-Friday)
|
||
4. Extract to: {self.data_dir.absolute()}
|
||
|
||
Expected files:
|
||
"""
|
||
for i, fname in enumerate(self.DATASET_INFO['files'], 1):
|
||
instructions += f" {i}. {fname}\n"
|
||
|
||
instructions += f"\nAfter download, run: python_ml/train_hybrid.py --validate\n"
|
||
instructions += "=" * 66
|
||
|
||
return instructions
|
||
|
||
def check_dataset_exists(self) -> Tuple[bool, list]:
|
||
"""Check if dataset files exist"""
|
||
missing_files = []
|
||
for fname in self.DATASET_INFO['files']:
|
||
fpath = self.data_dir / fname
|
||
if not fpath.exists():
|
||
missing_files.append(fname)
|
||
|
||
exists = len(missing_files) == 0
|
||
return exists, missing_files
|
||
|
||
def load_day(self, day_file: str, sample_frac: float = 1.0) -> pd.DataFrame:
|
||
"""
|
||
Load single day CSV file
|
||
sample_frac: fraction to sample (0.1 = 10% for testing)
|
||
"""
|
||
fpath = self.data_dir / day_file
|
||
|
||
if not fpath.exists():
|
||
raise FileNotFoundError(f"Dataset file not found: {fpath}")
|
||
|
||
logger.info(f"Loading {day_file}...")
|
||
|
||
# CICIDS2017 has known issues: extra space before column names, inf values
|
||
df = pd.read_csv(fpath, skipinitialspace=True)
|
||
|
||
# Strip whitespace from column names
|
||
df.columns = df.columns.str.strip()
|
||
|
||
# Sample if requested
|
||
if sample_frac < 1.0:
|
||
df = df.sample(frac=sample_frac, random_state=42)
|
||
logger.info(f"Sampled {len(df)} rows ({sample_frac*100:.0f}%)")
|
||
|
||
return df
|
||
|
||
def preprocess(self, df: pd.DataFrame) -> pd.DataFrame:
|
||
"""
|
||
Clean and preprocess CICIDS2017 data
|
||
- Remove NaN and Inf values
|
||
- Fix data types
|
||
- Map labels
|
||
"""
|
||
logger.info(f"Preprocessing {len(df)} rows...")
|
||
|
||
# Replace inf with NaN, then drop
|
||
df = df.replace([np.inf, -np.inf], np.nan)
|
||
df = df.dropna()
|
||
|
||
# Map attack labels
|
||
if ' Label' in df.columns:
|
||
df['attack_type'] = df[' Label'].map(self.ATTACK_LABELS)
|
||
df['is_attack'] = (df['attack_type'] != 'normal').astype(int)
|
||
elif 'Label' in df.columns:
|
||
df['attack_type'] = df['Label'].map(self.ATTACK_LABELS)
|
||
df['is_attack'] = (df['attack_type'] != 'normal').astype(int)
|
||
else:
|
||
logger.warning("No label column found, assuming all BENIGN")
|
||
df['attack_type'] = 'normal'
|
||
df['is_attack'] = 0
|
||
|
||
# Remove unknown attack types
|
||
df = df[df['attack_type'].notna()]
|
||
|
||
logger.info(f"After preprocessing: {len(df)} rows")
|
||
logger.info(f"Attack distribution:\n{df['attack_type'].value_counts()}")
|
||
|
||
return df
|
||
|
||
def map_to_ids_features(self, df: pd.DataFrame) -> pd.DataFrame:
|
||
"""
|
||
Map 80 CICIDS2017 features → 25 IDS features
|
||
This is approximate mapping for validation purposes
|
||
"""
|
||
logger.info("Mapping CICIDS features to IDS feature space...")
|
||
|
||
ids_features = {}
|
||
|
||
# Volume features (combine fwd+bwd)
|
||
ids_features['total_packets'] = (
|
||
df.get('Total Fwd Packets', 0) +
|
||
df.get('Total Backward Packets', 0)
|
||
)
|
||
ids_features['total_bytes'] = (
|
||
df.get('Total Length of Fwd Packets', 0) +
|
||
df.get('Total Length of Bwd Packets', 0)
|
||
)
|
||
ids_features['conn_count'] = 1 # Each row = 1 flow
|
||
ids_features['avg_packet_size'] = df.get('Fwd Packet Length Mean', 0)
|
||
ids_features['bytes_per_second'] = df.get('Flow Bytes/s', 0)
|
||
|
||
# Temporal features
|
||
ids_features['time_span_seconds'] = df.get('Flow Duration', 0) / 1_000_000 # Microseconds to seconds
|
||
ids_features['conn_per_second'] = df.get('Flow Packets/s', 0)
|
||
ids_features['hour_of_day'] = 12 # Unknown, use midday
|
||
ids_features['day_of_week'] = 3 # Unknown, use Wednesday
|
||
|
||
# Burst detection (approximate)
|
||
ids_features['max_burst'] = df.get('Subflow Fwd Packets', 0)
|
||
ids_features['avg_burst'] = df.get('Subflow Fwd Packets', 0)
|
||
ids_features['burst_variance'] = df.get('Subflow Fwd Bytes', 0).apply(lambda x: max(0, x))
|
||
ids_features['avg_interval'] = 1.0 # Unknown
|
||
|
||
# Protocol diversity
|
||
ids_features['unique_protocols'] = 1 # Each row = single protocol
|
||
ids_features['unique_dest_ports'] = 1
|
||
ids_features['unique_dest_ips'] = 1
|
||
ids_features['protocol_entropy'] = 0
|
||
ids_features['tcp_ratio'] = (df.get('Protocol', 6) == 6).astype(int)
|
||
ids_features['udp_ratio'] = (df.get('Protocol', 17) == 17).astype(int)
|
||
|
||
# Port scanning detection
|
||
ids_features['unique_ports_contacted'] = df.get('Destination Port', 0).apply(lambda x: 1 if x > 0 else 0)
|
||
ids_features['port_scan_score'] = (df.get('Fwd PSH Flags', 0) + df.get('Fwd URG Flags', 0)) / 2
|
||
ids_features['sequential_ports'] = 0
|
||
|
||
# Behavioral anomalies
|
||
ids_features['packets_per_conn'] = ids_features['total_packets']
|
||
ids_features['packet_size_variance'] = df.get('Fwd Packet Length Std', 0)
|
||
ids_features['blocked_ratio'] = 0
|
||
|
||
# Add labels
|
||
ids_features['attack_type'] = df['attack_type']
|
||
ids_features['is_attack'] = df['is_attack']
|
||
|
||
# Add synthetic source_ip for validation (CICIDS doesn't have this field)
|
||
# Generate unique IPs: 10.0.x.y format
|
||
n_samples = len(df)
|
||
source_ips = [f"10.0.{i//256}.{i%256}" for i in range(n_samples)]
|
||
ids_features['source_ip'] = source_ips
|
||
|
||
ids_df = pd.DataFrame(ids_features)
|
||
|
||
# Clip negative values
|
||
numeric_cols = ids_df.select_dtypes(include=[np.number]).columns
|
||
ids_df[numeric_cols] = ids_df[numeric_cols].clip(lower=0)
|
||
|
||
logger.info(f"Mapped to {len(ids_df.columns)} IDS features")
|
||
return ids_df
|
||
|
||
def load_and_process_all(
|
||
self,
|
||
sample_frac: float = 1.0,
|
||
train_ratio: float = 0.7,
|
||
val_ratio: float = 0.15
|
||
) -> Tuple[pd.DataFrame, pd.DataFrame, pd.DataFrame]:
|
||
"""
|
||
Load all days, preprocess, map to IDS features, and split
|
||
Returns: train_df, val_df, test_df
|
||
"""
|
||
exists, missing = self.check_dataset_exists()
|
||
if not exists:
|
||
raise FileNotFoundError(
|
||
f"Missing dataset files: {missing}\n\n"
|
||
f"{self.download_instructions()}"
|
||
)
|
||
|
||
all_data = []
|
||
for fname in self.DATASET_INFO['files']:
|
||
try:
|
||
df = self.load_day(fname, sample_frac=sample_frac)
|
||
df = self.preprocess(df)
|
||
df_ids = self.map_to_ids_features(df)
|
||
all_data.append(df_ids)
|
||
except Exception as e:
|
||
logger.error(f"Failed to load {fname}: {e}")
|
||
continue
|
||
|
||
if not all_data:
|
||
raise ValueError("No data loaded successfully")
|
||
|
||
# Combine all days
|
||
combined = pd.concat(all_data, ignore_index=True)
|
||
logger.info(f"Combined dataset: {len(combined)} rows")
|
||
|
||
# Shuffle
|
||
combined = combined.sample(frac=1, random_state=42).reset_index(drop=True)
|
||
|
||
# Split train/val/test
|
||
n = len(combined)
|
||
n_train = int(n * train_ratio)
|
||
n_val = int(n * val_ratio)
|
||
|
||
train_df = combined.iloc[:n_train]
|
||
val_df = combined.iloc[n_train:n_train+n_val]
|
||
test_df = combined.iloc[n_train+n_val:]
|
||
|
||
logger.info(f"Split: train={len(train_df)}, val={len(val_df)}, test={len(test_df)}")
|
||
|
||
return train_df, val_df, test_df
|
||
|
||
def create_sample_dataset(self, n_samples: int = 10000) -> pd.DataFrame:
|
||
"""
|
||
Create synthetic sample dataset for testing
|
||
Mimics CICIDS2017 structure
|
||
"""
|
||
logger.info(f"Creating sample dataset ({n_samples} samples)...")
|
||
|
||
np.random.seed(42)
|
||
|
||
# Generate synthetic features
|
||
data = {
|
||
'total_packets': np.random.lognormal(3, 1.5, n_samples).astype(int),
|
||
'total_bytes': np.random.lognormal(8, 2, n_samples).astype(int),
|
||
'conn_count': np.ones(n_samples, dtype=int),
|
||
'avg_packet_size': np.random.normal(500, 200, n_samples),
|
||
'bytes_per_second': np.random.lognormal(6, 2, n_samples),
|
||
'time_span_seconds': np.random.exponential(10, n_samples),
|
||
'conn_per_second': np.random.exponential(5, n_samples),
|
||
'hour_of_day': np.random.randint(0, 24, n_samples),
|
||
'day_of_week': np.random.randint(0, 7, n_samples),
|
||
'max_burst': np.random.poisson(20, n_samples),
|
||
'avg_burst': np.random.poisson(15, n_samples),
|
||
'burst_variance': np.random.exponential(5, n_samples),
|
||
'avg_interval': np.random.exponential(0.1, n_samples),
|
||
'unique_protocols': np.ones(n_samples, dtype=int),
|
||
'unique_dest_ports': np.ones(n_samples, dtype=int),
|
||
'unique_dest_ips': np.ones(n_samples, dtype=int),
|
||
'protocol_entropy': np.zeros(n_samples),
|
||
'tcp_ratio': np.random.choice([0, 1], n_samples, p=[0.3, 0.7]),
|
||
'udp_ratio': np.random.choice([0, 1], n_samples, p=[0.7, 0.3]),
|
||
'unique_ports_contacted': np.ones(n_samples, dtype=int),
|
||
'port_scan_score': np.random.beta(1, 10, n_samples),
|
||
'sequential_ports': np.zeros(n_samples, dtype=int),
|
||
'packets_per_conn': np.random.lognormal(3, 1.5, n_samples),
|
||
'packet_size_variance': np.random.exponential(100, n_samples),
|
||
'blocked_ratio': np.zeros(n_samples),
|
||
}
|
||
|
||
# Generate labels: 90% normal, 10% attacks
|
||
is_attack = np.random.choice([0, 1], n_samples, p=[0.9, 0.1])
|
||
attack_types = np.where(
|
||
is_attack == 1,
|
||
np.random.choice(['ddos', 'port_scan', 'brute_force', 'suspicious'], n_samples),
|
||
'normal'
|
||
)
|
||
|
||
data['is_attack'] = is_attack
|
||
data['attack_type'] = attack_types
|
||
|
||
# Add synthetic source_ip (simulate real traffic from 100 unique IPs)
|
||
unique_ips = [f"192.168.{i//256}.{i%256}" for i in range(100)]
|
||
data['source_ip'] = np.random.choice(unique_ips, n_samples)
|
||
|
||
# Add timestamp column (simulate last 7 days of traffic)
|
||
from datetime import datetime, timedelta
|
||
now = datetime.now()
|
||
start_time = now - timedelta(days=7)
|
||
|
||
# Generate timestamps randomly distributed over last 7 days
|
||
time_range_seconds = 7 * 24 * 3600 # 7 days in seconds
|
||
random_offsets = np.random.uniform(0, time_range_seconds, n_samples)
|
||
timestamps = [start_time + timedelta(seconds=offset) for offset in random_offsets]
|
||
data['timestamp'] = timestamps
|
||
|
||
df = pd.DataFrame(data)
|
||
|
||
# Make attacks more extreme
|
||
attack_mask = df['is_attack'] == 1
|
||
df.loc[attack_mask, 'total_packets'] *= 10
|
||
df.loc[attack_mask, 'total_bytes'] *= 15
|
||
df.loc[attack_mask, 'conn_per_second'] *= 20
|
||
|
||
logger.info(f"Sample dataset created: {len(df)} rows")
|
||
logger.info(f"Attack distribution:\n{df['attack_type'].value_counts()}")
|
||
|
||
return df
|
||
|
||
|
||
# Utility function
|
||
def get_cicids2017_loader(data_dir: str = "datasets/cicids2017") -> CICIDS2017Loader:
|
||
"""Factory function to get loader instance"""
|
||
return CICIDS2017Loader(data_dir)
|